A Careful Consideration of the Influence of Structure, Partial charges and Basis Sets on Collision Cross Sections of Monosaccharides when Comparing Values from DFT Calculated Conformers to those Obtained Experimentally
نویسندگان
چکیده
Molecular modelling is routinely employed to assign 3D structures to collision cross sections (CCSs) derived from ion mobility mass spectrometry experiments (IM-MS). The assignment of model structures to the experimental CCSs remains an ambiguous task, where one of several methods may be used to obtain a CCS from a given set of coordinates. The most reliable of the commonly used techniques, the Trajectory Method, starts with atomic coordinates which can be accompanied by partial atomic charges, obtained using ab initio methods. Here, we use lithiated αand β-glucose ions as exemplar molecules to detect the effect conformational modification and changes to the partial charge distribution have on computed collision cross sections. Six popular charge schemes (Mulliken, APT, CHelpG, MK, HLY and NPA) were examined in combination with three functionals (Hartree-Fock, B3LYP and M05) and five basis sets (STO-3G, 3-21G, 6-31G, 6-31+G and 6-31G*) on twenty unique structures. Our findings indicate that molecular conformation makes a significant contribution to fluctuations of partial charges in Electrostatic Potential (ESP) and Mulliken charge scheme; Partial charges derived using Natural Population Analysis (NPA) and ESP methods are largely independent of functional and basis set selection; and both selection of the charge scheme and functional/basis set combination play a large role in the resultant CCS, often causing few percent fluctuations in the computed values. . CC-BY-ND 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/162305 doi: bioRxiv preprint first posted online Jul. 11, 2017;
منابع مشابه
تداخل دینامیکی سه ذرهای در برخورد الکترون و پوزیترون با اتم پوزیترونیوم
In this project, the Faddeev-Watson-Lovelace (FWL) formalism is generalized to large scattering angles. The angular range includes 0-180 degrees. Using this method, the charge transfer differential cross-sections are calculated, in a second-order approximation, for collision of energetic positrons and electrons with neutral positronium atoms. In this approximation, the rearrangement amplitude c...
متن کاملQuantum Chemistry Study & Evaluation of Basis Set Effects on Prediction of Amino Acids Properties:
The potential energy surface of gaseous glycine determined years ago in the ab initio B3LYP/6-311++G** calculations is composed of thirteen stable conformers. We performed the ab initiomolecular orbital calculations as the starting point to carry out a force field and normal coordinatecalculation on the most stable conformer of non-zwitterionic glycine [conformer (I)]. Thecalculations were carr...
متن کاملThe contributions of molecular framework to IMS collision cross-sections of gas-phase peptide ions.
Molecular dynamics (MD) is an essential tool for correlating collision cross-section data determined by ion mobility spectrometry (IMS) with candidate (calculated) structures. Conventional methods used for ion structure determination rely on comparing the measured cross-sections with the calculated collision cross-section for the lowest energy structure(s) taken from a large pool of candidate s...
متن کاملQuantum Chemical Modeling of 2-(Cyclohexylamino)-2-oxo-1-(quinolin-4-yl)ethyl 4-Chlorobenzoate: Molecular Structure, Spectroscopic (FT-IR, NMR, UV) Investigations, FMO, MEP and NBO Analysis Based on HF and DFT Calculations
In the present work, the quantum theoretical calculations of the molecular structure of the compound 2-(Cyclohexylamino)-2-oxo-1-(quinolin-4-yl)ethyl 4-Chlorobenzoate have been predicted using Density Functional Theory (DFT) in the gas phase. The geometry of the title structure was optimized by B3LYP/6-31+G* and HF/6-31+G* levels of theory. The theoretical 1H and 13C NMR chemical shift values o...
متن کاملAbsorption of DCM Dye in Ethanol: Experimental and Time Dependent Density Functional Study
Experimental and theoretical absorption spectra of [2-[2-[4-(dimethylamino) phenyl]ethenyl]-6-methyl-4H- pyran-4-ylidene]-propanedinitrile (DCM) have been studied. UV-Visible (UV-Vis.) absorption spectrum of DCM has been reported after its synthesis. Two relatively intense peaks appeared at 473 and 362 nm respectively. A theoretical investigation on the electronic structure of DCM is presented ...
متن کامل